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Summary

A theory to determine the properties of a fluid from measure-

ments of its projections was developed and tested. Viewing

cones as small as 10° were evaluated, with the only assumption

being that the property was space limited. The results of

applying the theory to numerical and actual interferograms of

a spherical discontinuity of refractive index are presented. This

theory was developed to test the practicality and limits of using

three-dimensional computed tomography in internal fluid

dynamics.

Introduction

Nonintrusive optical measurements and visualization tech-

niques have become increasingly available and important for

experiments in internal fluid dynamics (the fluid dynamics of

flows in engines), but the viewing ranges are small. Except

for special cases such as the flow around helicopter blades

(ref. 1), the view typically is restricted to 10 ° or less from

some principal direction. It is then difficult to measure the

spatial distributions of properties such as density and velocity.

Current approaches use local measurement methods, such as

laser velocimetry (ref. 2) and nonlinear spectroscopy (ref. 3),
or two-dimensional measurements based on sheet illumination
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(ref. 4). These methods are applied arduously and repetitively

to estimate the properties of steady or cyclic flows.

Projective measurement methods such as interferometry,
moire', schlieren, and absorption-emission spectroscopy are

well-developed alternatives. Diffuse-illumination holographic

interferometry, in particular, is used for multiview recordings

of unsteady as well as steady flows. The projective methods
are excellent for rapid, whole field, flow visualization (refs. 5

to 8), but they are not generally suitable for quantitative anal-

ysis of three-dimensional flows unless the projections can be
inverted.

There are at least three reasons for making a special effort

to solve limited-view inverse problems in internal fluid dyn-

amics. First, it is becoming easy to analyze the essential data:

commercial sources of computerized fringe and pattern anal-

ysis systems are proliferating. Second, it is becoming easier
to record the essential data: lasers such as the Nd:YAG laser

used for holography (ref. 9) and spectroscopy have approached

turnkey status. Third, the increasingly sophisticated modeling

in internal fluid dynamics demands quantitative data: the

distributions of velocity and at least one thermodynamics var-

iable such as density or temperature are required (ref. 10).

There is no reason in principle why a reasonably general

function cannot be recovered from its projections in any

nonzero viewing range. This conclusion follows from the

projection-slice theorem (ref. i 1) and the analytic continuation

of the partially recovered Fourier transform of the function.

However, recovering a function from measurements of a finite

number of projections is quite different when the measurements



arecorruptedbynoiseandsystematiceffectssuchasrefrac-
tion.Theproblemis extremelyill-posed.

Thereareinfacttwoquestionsbeinginvestigatedinlimited
viewingrangecomputedtomography.Thefirst,morefunda-
mentalquestion,askshowwella functionwithverygeneral
propertiescanberecoveredfromafinitenumberof error-
andnoise-corruptedmeasurements.Thesecondquestionasks
howmuchtherecoverycanbeimprovedbyincluding,for
example,constraintssuchasthevaluesofthefunctionona
surfaceoraknowledgeofthefunctionalformsoftheimportant
flowfeatures.

Thispaperaddressesthefirstquestiononly.Aspace-limited
functionwithverygeneralpropertieswasassumed.Thex-ray
transforms,orprojections,ofthatfunctionwereassumedto
besampleda finitenumberof timesforafinitenumberof
views.Izendevelopedthemathematicaltheoryusingtomog-
raphyforthisstudy(refs.12to15).Histheory,whichexpands
thefunctionin orthogonalpolynomialsandemploysthe
projection-slicetheorem,usessingular-valuedecomposition
toquantifyandcombattheill-posedness(sensitivitytoinitial
valueerrors)of theinversionprocedure.Theerrorindeter-
miningthepolynomialcoefficientsisthenestimatedfromthe
experimentalerror,andtheill-posednessis controlledby
restrictingthesetofpolynomialcoefficientsactuallycalculated
fromdata.

Thispaperbeginsbysummarizingtheinversionprocedure,
whichis basedon themoregeneraltheorypresentedby
lzen.Theinversionprocedurewasfirsttestedonphantoms
(mathematicalobjects).Thispaperpresentstheresultsfora
sphericaldensitychangeandforsimulateddatafromseveral
viewingranges.Theresultsfromtwonarrow,butperpendicular,
viewingrangesarealsopresented.(Twoperpendicularviewing
rangesarepossibleforsomewindtunnelexperiments.)Finally,
theresultsoftestingtheinversionprocedureonactualmeasure-
mentsarepresented.Themeasurementswerefromdouble-
exposure,diffuse-illuminationhologramsofanapproximately
sphericaldensitychange.Heterodyneinterferometrywasused
tomeasure49fringepatternsfromone10°half-angleviewing
coneforeachinversionperformed.Theexperimentaltech-
niqueisdiscussed,andtheresultsarepresented.Theresults
areencouraging,butrefractioneffectsandmisregistration
errorsareespeciallyinfluentialwhentheviewingrangeis
small.Theinversionsrequiredsubstantialcomputingresources
includingtheNASALewisResearchCenterCRAYX-MP
andtheNASAAmesResearchCenterCRAY-2.Thework
discussedhereinispresentlybeingaugmentedbyresearchinto
theuseof constraintstoimprovetherecoveryandtheeffi-
ciencyofrecoveryofthree-dimensionalpropertydistributions
fromtheirprojectionswithina limitedviewingrange.

Mathematical Theory

The goal of this research is to recover the three-dimensional

distribution of a physical quantity, such as density, from

information on projections of the quantity. Mathematically,
the projections are interpreted as line integrals of the object

function: the function of three variables representing the

physical quantity to be recovered.

Let f represent the object function. We assume that the

support off, that is, the region on which f is nonzero, lies
within a unit ball in 613 and that fis sufficiently regular so

that all the integrals discussed will converge. A more precise

statement of the required conditions can be found in references

12 and 13. The experimentally available data are samples of

the x-ray transform off, defined by

Pf(w,x) = ,I: f(x + t¢o)dt

where w _ S2. That is, _0 is a direction on the unit sphere S 2.

Here x is a point on the corresponding perpendicular plane

w ± through the origin. Note that there is no problem with the

infinite limits sincef(x) = 0 for ]xI > I. The projection along

a specific direction w is defined by

P,of(x) = Pf(_,x)

Scanning the projection of the hologram at a fixed lens position

is just sampling P_f(x) in x. In the continuous case, when

P_f(x) is known for all _0and x, fcan be recovered by use

of the x-ray transform projection slice theorem (ref. 11). This
theorem is the fundamental relation between the x-ray trans-

form and the object function which is used to recover the object

function from the holographic data. Before presenting the
theorem we need to establish some notation conventions. The

n-dimensional Fourier transform (here n is either 2 or 3) is
defined as

F,,f(x) = f6t" e-iX'kf(x)dr

and correspondingly, the inverse Fourier transform is given by

(F_lf) (k) = (27r) -"I_" eiX'kf(k)dk

THEOREM (Projection-Slice)

Fix_eS _'. Then for r/ ew ±,

(2r)(FZlf) (rl) = (FZ'(P_f))O1)

For a proof, see references 12, 16, or 17. Here the two-

dimensional inverse Fourier transform of P_f is performed

on the plane w'. The result is also a function on ¢o±. The

projection-slice theorem states that this function on _0z is

really just the inverse three-dimensional Fourier transform of

the object function evaluated on a slice, _0± , of 6l 3. Thus



eachdirectionw on which projection data is acquired gives

rise to data for the inverse Fourier transform of f on the

corresponding ortbogonal plane through the origin. At this
point we would like to point out that the inverse Fourier
transform was used instead of the Fourier transform in order

to simplify tracking signs. Except for the inconsequential sign

of the argument, the two transforms are equivalent, so there
should be no confusion when we refer to the inverse Fourier

space as Fourier space.

Now we describe the algorithm based on a discretization

of the above theorem, said theorem applying to continuously

sampled data. The algorithm must take into account the discrete

nature of the sampled data and must also employ a satisfactory

discrete representation for the object function.

The discretization of the object function f is obtained by
expanding f in a generalized Fourier series

¢:o $ m0

= a;0"'v>m,(r,:,0)
s=O mo=O m 1= -- m 0

(1)

for

s - m 0 even

where IV,'0"_ l is an orthogonal basis for square integrable

functions in 6l _ supported in the unit ball, and Iamom_1 are the

unknown coefficients to be recovered. More specifically,

V_ o'm_, in polar coordinates (r,¢,O), can be expressed in

terms of the spherical harmonics S(mo,mi; _,0) and the
Jacobi polynomials p_s,O by

Vsm°'ml(r,¢,O) = RsO(r)S(mo,mt; _o,0)

R_o( r) = rmO(w( r) _-l POn°+ v_'_-3_)t l - 2r z)
t --{s-toO)� 2 _"

and

((2mo_ +_ 1)_(mo - m ),\,a_S(mo,ml, _p,0) i • pm_(cos _)etml 0

\ 4r(mo + ml)! j o

where Pff' is the associated Legendre function, and o_ is an

arbitrary parameter controlling the relative weight given to

data from near the origin compared with data from near the

boundary lr] = 1. The factor w(r)= (1- ]r[2) -{_'-_) is
required to maintain orthogonality.

The three-dimensional inverse Fourier transform of _V_ 'm_

is computed analytically in reference 12. Applying that trans-

form to equation (1) gives

_zo s m 0

tno,m I
Fj-'f(q,lz,r)= E E E as c..... o

s=O #rlo=O m l=-rrt 0

× [q-"J,+s(q)S(mo,ml; ¢,0)]

for

(2)

s - m 0 even

where (q,lx,r) are spherical coordinates on the inverse Fourier
613, J,,(t) is the Bessel function of the first kind, and

C_.smo= imo(27r)__2__ h I'[(s - mo)/2 + ot - V2]
F[(s - m0)/2 + 1]

A finite discretization forfis accomplished by terminating the

first sum in equation (2) at S. In this case, there are

(S + 1)(S + 2)(S + 3)/6 unknown coefficients a_ o'''_ to be

determined. Once these coefficients have been recovered, then

fcan be reconstructed from equation (1). Such a reconstruction

is said to be of degree S because

[w(r)l_°'m'is _ S, s - m o even, [mil _ m0]

is a basis for the polynomials of degree < S. In other words,

the terminated sum representation of w(r)fis a degree S three-

dimensional Taylor series.

The data are not available on a continuum, but rather are

only sampled discretely on each w±. Substituting a two-
dimensional, discrete, inverse Fourier transform for the con-

tinuous transform on each w± gives a new sampling grid on

_0" for t:2 1 (P,_f) which, by the projection slice theorem,

is interpreted as being on a slice in the Fourier 6/3. Thus, if

{,7_fi=, ..... I}

is the set of such sample points in Fourier 6l 3, then

o0 S rno

F3-'f07') = ]_ _ E

s=O mo=O m I = --mo

ayo'='F;' _o,_, (,_)

for

s - mo even

where F 3-_f(_1,) is computed directly from the experimental

data by using a two-dimensional fast Fourier transform, and

F3_V_ _o''_ (rh) can be directly evaluated since the location

of rh is explicitly known, as is the analytic expression for
F£ 1VTo,r,i,"



Thus the inversion procedure has been reduced by a careful

discretization to the solving of a linear system

b"= Qff (3)

where if'is the column vector of I elements F 3 If(rli), ffis the

(S + 1)(S + 2)(S + 3)/6 element vector of unknown

coefficients, and Q is the matrix of basis functions F3-1 vms0''_

evaluated at the sample points r/i. Note that b'depends on the

sampling geometry and the measured data, while Q depends

only on the sampling geometry and the desired degree of the
reconstruction.

In the following discussion, by data we refer not to the raw

experimentally obtained data, but rather the data after the two-

dimensional Fourier transforms have been applied. Practical

difficulties arise in numerically solving the linear system

(eq. (3)). First, experimental considerations restrict the set of

directions from which projection data are available. This means

that only a very small portion of three-dimensional Fourier

space is covered with sample points. This is manifested

as a severe ill-posedness in the linear system. The method

employed to combat the ill-posedness and the resulting sensi-

tivity to noise is the application of the singular value decom-
position (SVD) to obtain a least squares solution for h-7.The

ill-posedness means that the solution to equation (3) is much

more sensitive to certain components of the data than others.

Thus, small amounts of noise in some data components can

swamp the solution. The SVD provides a mechanism to elim-

inate this problem. A decision is made as to what level of

relative sensitivity is acceptable given the noise present in the

data, and no components of the data space for which the

sensitivity exceeds this cutoff are used in the reconstruction.

While eliminating unwanted noise sensitivity, it has the

drawback of giving an incomplete solution in the sense that

the component of the solution corresponding to excised data

is missing. However, this component could not be reliably

recovered anyway, so the resulting solution is, in some sense,

the best that can be done under the circumstances. Many

references on the SVD and ill-posed problems can be found

in the literature (ref. 17, for example).

The second practical problem in implementing the algorithm

is the size of the reconstruction. Each projection was sampled

with a relatively low density of 32 by 32, and data from 49

projections were collected. In practice, only the central 29 of

these projections were used, so for this experiment I = 29 696.

In order to obtain useful results on experimental data, the order
of the reconstruction needs to be at least S = 12, so there are

455 coefficients to be determined. Thus, the matrix Q, on

which the SVD must be performed, has 13.5 million entries,

each of which requires 16 bytes (double precision complex).

Therefore, each reconstruction requires over 200 megabytes

of memory, even for modest values of the parameters I and S

controlling the reconstruction size. This SVD is computation-

ally expensive to perform, even after vectorization. Fortunately,
since the matrix Q only depends on the sample geometry, it

can be computed just once and used repeatedly for different
data sets.

The computational needs for the inversion were met by the

NASA Ames Cray-2 supercomputer. A typical run of the size

described takes approximately 5000 sec of single CPU process-
ing, most of which is spent on calculating the SVD of Q.

Numerical Experiments

Numerical experiments were performed to test the

implementation of the reconstruction algorithm. Computer-

generated data were reconstructed under various conditions,

some corresponding to sampling geometries obtainable in

the laboratory, and others corresponding to more general

circumstances. The results reported in this section are for the

numerical reconstruction of a model ball. Projection data were

computed for an object which was unity on the interior and

zero on the exterior of a sphere centered at the origin with
a diameter of one-half the field of view. This model ball

appears in figure 1.

All of the reconstructions are displayed as contour surfaces

with a constant function value and as slices through the object,

again using color to indicate function value. The rectangular

jagged edges at the boundary of the displayed region are an

artifact produced by the display software handling the blanked
points outside the spherical field of view. These jagged edges

have no scientific significance. The figures were created with

the software PLOT3D on a Silicon Graphics Personal Iris 4D/25

graphics workstation and a Seiko Instruments CH-5504-PM3

printer, together with the Freedom of Press PostScript

interpreter.

In the first reconstruction, projection data from a 90* cone,

that is, a full view, were used. This numerical experiment

shows that the algorithm can perform accurately (to within

the limits imposed by the sampling density) when data from

all directions are available. The reconstruction shown in fig-

ures 2 to 4 was done to degree 12. That is, S = 12, and 455

coefficients a'flo'm_ were determined. This reconstruction is

very well-posed since the condition number (the ratio of the

largest to smallest singular value) for the matrix Q is

approximately 5. In viewing figures 2 to 4, note that the

spherical symmetry of the original model has been retained.

In the second experiment, a 10 ° viewing cone along the

z-axis was used. In this case, data was generated for the pro-

jections from 29 viewing directions within that cone. This

configuration corresponds to the sampling geometry of the lab-

oratory experiment discussed later. The condition number for
Q with this set of sample directions is 6.72 × 1012, which con-

firms that this is an ill-posed problem, as expected. Figure 5

exhibits a couple of contour surfaces for the resulting image,

and figure 6 shows three central cross sections. The spherical
model appears here as an oblong object. The cross section

along the xy-plane, roughly perpendicular to the viewing

directions, is circular and faithfully reproduces the cross
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Figure l.--Model ball from which theoretical data is generated. The ball
is located at the center of the field of view and has a diameter of one-half

the field of view.
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Figure 3.--Three onhogonal slices through the center of the full-view

reconstruction. Note that the edge of the model ball is fairly accurately

located in all of the planes. There is also some Gibbs phenomenon present.
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Figure 2.--Full-view reconstruction of the model bail. The views used in

the reconstruction were all sampled in a cone of central angle 90°; that is,

there were no restrictions on the viewing directions. The jaggedness

appearing near the edge of the field of view is an artifact of the contouring

and display algorithm, and does not appear in the data.

X

Z

¥1- I I I I I I '

Figure 4.--One contour surface of the full-view reconstruction near the

expected boundary of the model ball. The spherical nature of the model

ball has been recovered.
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Figure 5.--Reconstruction of the modelball from projections all lying inside
a cone of central angle 10". The axis of the viewing cone or cone of
projection directions is along the z-axis. The jagged edges are again an
artifact of the contour and display algorithm. For a 10" reconstruction,
the method of this paper appears to be unable to recover the boundary
locationsalong directionsapproximatelyparallel to the projectiondirections.

Z

E

Figure 6.--Three orthogona] slices through the same reconstruction as in

figure 5. Note that along the x_,'-plane, the slice accurately locates the

model boundary, but along the xz- and yz-planes it shows elongation in the

z-(projection) direction.

section of the model (again, to within the limits imposed by

the sampling). However, there is an elongation along the

z-axis, parallel to most of the viewing directions. This loss

of resolution, the corresponding smoothing, and uncertainty

in the position of the edge location is interpreted geometrically

as being due to the lack of data for lines which are tangent

to the edge. Analytically, this phenomenon occurs because

some of the basis function coefficients for the object space
have been zeroed so as not to make the solutions sensitive to

noise. In fact only the singular vectors corresponding to 255

out of 455 of the singular values, the ones within a factor of

50 of the largest singular value, were used. The factor of 50

was chosen because the signal-to-noise ratio in the laboratory

data was expected to be at worst 50. The components in the

object function space which were omitted are the ones with

higher spatial frequency content in the z-direction, precisely

the ones which are needed to display sharp boundaries in that

direction. In figure 7, one particular contour surface is shown
to illustrate the severe distortion that can occur.

One possible experimental setup would permit two separate

holographic plates to be exposed simultaneously. If these plates

are placed at right angles to one another it would be possible
to have data from two orthogonal viewing cones available

for the reconstruction. The third numerical experiment was

designed to explore whether there would be sufficient improve-
ment to justify the construction of such an experimental appara-

tus. Here, data from two viewing cones, each with 29 viewing

directions, were generated. The reconstruction becomes much

less ill-posed, with a condition number of 1431, and with 417

singular values within a factor of 50 of the largest. Thus, the

model object can be recovered more accurately. Another

interpretation of this result is that a significantly larger region

of three-dimensional Fourier space is populated with sample

points than is covered in the second experiment. The region

of Fourier space which is populated by two cones of sample

points can be even more important than the total volume

covered. In particular, one 20* viewing cone is inferior to the

two orthogonal 10" cones, despite the larger volume sampled
inside of the 20* cone. Figures 8 to 10 display the model

ball reconstructed with data from two orthogonal 10 ° viewing

cones. Here, a good portion of the spherical nature of the

model has been recovered, but there is still a loss of resolution

due to the incomplete coverage of Fourier space. The elonga-

tion present in figures 5 to 7 has been significantly reduced
because there are now data available from lines tangent to the

xy-plane. This allows the determination of boundaries which

are nearly parallel to that plane. However, some shape arti-

facts remain as a result of the incomplete Fourier space cover-

age. In particular, the central slices appear to have developed

corners, and in figure 10, the single contour displayed assumes

the shape of a cubeoctahedron. As of a result of this numerical

experiment, a decision was made to incorporate two windows
into a wind tunnel. This will make it possible to obtain two

cones of projection data experimentally.
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Figure 7.--The same contour level shown in figure 4 for the full-view

reconstruction is shown here for the 10" reconstruction. The caps at the

ends appear to be a form of Gibbs phenomenon. The ball appears to "leak"

out through the ends.
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Figure 8.--Projection data from directions inside two orthogonal 10 ° cones,

one along the x-axis, the other along the z-axis, were used to produce this

image. There is considerable improvement, compared with figure 5,

in the recovery of the edge locations.

Y

Figure 9.--Three orthogonal slices through the two-cone reconstruction.

There is a slight squaring artifact visible, and the contours in the region

outside the model ball have become irregular.

eSNTSHf10Ltotts
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Figure 10.--The same contour shown in figures 4 and 7 is shown for the

two-cone reconstruction. The shape of the contour closely resembles a

cubeoctahedron, which explains the squaring artifact appearing in the

orthogonal slices through the center (fig. 9). The caps at the ends appear

to be a form of Gibbs phenomenon.
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Experimental Procedure

This section discusses an experiment to create and measure

a real object that simulates the numerical object, or phantom.

For the experiment, we attempted to create a spherically

bounded change in index of refraction, said change occurring

between the two exposures of a double-exposure hologram.

The reconstructed projections or fringe patterns were then
measured for 49 views within a limited viewing range, and

the measurements were subjected to the inversion procedure

for comparison with the phantom data. For consistency with

the numerical experiment, only 29 views were used.

The object used was a liquid (dimethyl sulfoxide, or DMSO)

contained in a rectangular cell having inside height, width,

and length of 106, 136, and 51 mm respectively. A 50-ml

Pyrex spherical flask, having an outside diameter of about
48 mm, divided the liquid into two regions. Two glass win-

dows, 92-mm high by 110-mm wide by 6-mm thick, allowed

diffused laser light to pass through the cell to a 4- by 5-in.

holographic plate located 241 mm from the flask center. The

flask was centered with respect to the holographic plate, and

clamped with its neck vertical. The DMSO (n o = 1.4773 at
25 *C, ref. 18) was index-matched visually to Pyrex by adding
a small amount of water.

Double-exposure, diffuse-illumination holograms were used

to record changes in the index of refraction of the liquid. The

reconstructed image of the flask and the fringe patterns were

then imaged (unity magnification) at a detector plane by an

f/7.5 lens. The lens was mounted close to the hologram in

an actuator-driven, xy-translation stage. The lens could be

positioned with micrometer sensitivity within an 82-mm by

82-mm window that was parallel to the hologram. The half

angle of the cone of views of the center of the flask was then
about 10 °.

The fringe patterns were detected and measured by optical

heterodyning (ref. 20). Dual reference beam holograms were
recorded for this purpose with an argon-ion laser. The

reference beam interangle was 0.015 °, and the reference signal

for the phase meter was derived from the interference pattern

(about one-half fringe per millimeter) formed by the recon-
struction beams. A lock-in amplifier was used to make the

interference-phase measurements. A 1.5-mm-diameter fiber

bundle and photomultiplier were combined to detect the fringe

pattern. The fiber bundle was positioned with an accuracy of

10/_m by a three-axis computer-controlled positioning stage.

The same computer was used to collect and process the

measurements. This setup, with the small angle between

reference beams, has a sensitivity of about 1/100 fringe.

The maximum phase variation between the center and edge

of the image of the flask was restricted to about one fringe

(360*). Even one fringe corresponds to a fringe gradient,

averaged over the detector, of 85°/mm at the edge.

It is difficult to produce a uniform change that yields one

fringe. The index of refraction of the liquid in the flask depends

on composition, temperature, and pressure (refs. 18 and 19).

Solvents, except for water, have large temperature coefficients

of index of refraction. The temperature effect for the flask

of DMSO is about 20 fringes/K. For this experiment, a pump

was used to halve the pressure in the flask between exposures

of the double-exposure hologram. The pressure reduction acts

to decrease the index of refraction, but the accompanying

temperature decrease acts to increase the index. The net effect

was, fortuitously, a center-to-edge phase change of about a

fringe.

Measurements were made at 49 views corresponding to 49

uniformly spaced lens positions within the 82-ram by 82-mm

window of lens positions. An earlier experiment done with

water had shown the importance of having good registration

of the different views. To assure registration, a point light

source was centered in the reconstructed image of the flask,

and the starting point of the detector was always set relative

to the image of that light source. The uncertainty of this

procedure was estimated to be 0.2 mm. Measurements were

recorded for each view at 32 by 32 uniformly spaced points

within a 55-mm by 55-ram region. This region included part

of the neck of the flask as well as some points in the sur-

rounding fluid. Figure 11 is a plot of the data for a sample

view. All data include a phase offset that depends on the
measurement electronics and the reference fiber position. A

phase measurement at a point in the surrounding fluid must
be used as a reference.

There are a number of effects and errors that might affect

the results: the random and systematic phase-measurement

errors of heterodyne holographic interferometry (ref. 20)

averaging over the detector aperture; variations in spherical

perspective within a view; the effects of index mismatch

including reflection, refraction, and interexposure motion of

the flask; nonuniformity of the change in refractive index;

t I'l._t S

--i X

Figure l l.--Experimental data from the hologram. The central projection

(along the axis of the viewing cone) is displayed. The data from this and

28 other projections were used to generate the following three figures.
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distortion; and misregistration of the views. An earlier

experiment performed with water as the working fluid showed

that refraction and misregistration have the most serious

consequences.
A set of measurements was performed on the DMSO

hologram to show the effect of misregistration. A small view-

to-view variation was superimposed on the starting position

of the detector. The variation, equal to the spacing between

measurements (1.774 ram), was applied randomly in the
horizontal or vertical scan directions.

The results for the registered and misregistered data are

presented in the next section and are compared with the results

for the equivalent phantoms.

Experimental Results

In this section we describe the reconstruction obtained from

the experimentally acquired data and contrast the results with

the numerical experiments performed on computer-generated
data.

Using the central 29 views of the experimental data, a

degree 12 reconstruction was performed. The central projec-

tion of the experimental data is shown in figure 11. The profile

of the flask is visible. Also note that the body of the flask is

only approximately spherical, because of either experimental
error or aberrations in the flask itself.

Since the sampling geometry and reconstruction degree were

the same as in the second numerical experiment described in

section 3 (figs. 5 to 7), the SVD did not need to be recomputed.

Thus, the reconstruction of the experimental data required only

200 additional sec of CRAY-2 CPU time. Figures 12 to 14

show the results. In figure 12, we see a slice through the center

of the field of view on the xy-plane. This plane is parallel to

the plane of the hologram, and the flask is recovered faithfully.

The green-yellow contour, of value zero, corresponds to the

physical edge of the flask. The location and size of the body

and neck of the flask are well reproduced, although there is

Gibbs phenomenon (ringing) and some smoothing present in

I I I I I I I I I IX

Figure 12.--Slice along the .U,'-planethrough the center of the field of view
of the reconstruction of a small spherical flask with a short neck. The
data were sampled in a 10° viewing cone by the methods described in
the text. The neck of the flask appears in the reconstruction at the left
of the image. This is approximately the view obtained by looking directly
at the hologram.
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Figure 13.--Slice through the flask reconstruction along the yz-plane. This

view corresponds to looking down the neck of the flask. Along the y-direction

the edges are well defined, but in the z-direction, the projection direction,

the edges have been smeared out.
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Figure 14.--xz-slice of the flask reconstruction. The edge at the bottom of

the flask, opposite the neck, is recovered. However, the neck edges are

not well recovered. The neck appears as the spread-out green region on

the bottom of the image. The body of the flask consists mainly of the

cyan region.
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Figure 15.--xy-view is the same as in figure 12 except that each of the 29

projections used in the reconstruction was shifted one sample point in a

random direction to illustrate the effects of the misregistration, one form

of experimental error.

the reconstruction. In figures 12 and 13, sections of the recon-

structed image are shown on the planes transverse to the holo-

gram. Along these planes, significant artifacting is present,

and the edge locations suffer from blurring. In the experimental
data it is assumed that the noise level is at most 2 percent.

The SVD is used (keeping all singular values within a ratio

of 50 of the largest) to combat the ill-posedness of the recon-

struction in the presence of noise. The effect of this procedure

appears as a reduction in the rate of increase of function value

when crossing the boundary of the flask from the interior to
the exterior. In fact the rate becomes so slow in the directions

transverse to the xy-plane that the function value external to
the flask is not achieved before the end of the field of view

is reached. The same phenomenon is observed along the

z-axis in the 10° viewing cone numerical phantom reconstruc-

tion (figs. 5 to 7). It is anticipated that constraint data such

as that which could be obtained from measurements using sheet

illumination could greatly improve the reconstruction quality.

If such additional data provide linear constraints, they can

easily be incorporated into the reconstruction algorithm as
additional rows in the matrix Q.

As mentioned earlier, reconstruction is considerably

sensitive to misregistration of the projections. That is, it is

important that the centers of each of the viewing direction

sample planes should be projections of the same point, the

origin. To illustrate the effects of poor registration, the same

hologram used above was resampled after the data were
deliberately misregistered. Each view was shifted by one

sample point in a randomly chosen direction. In figures 15
to 17 the result is displayed. Although the general shape of

the flask can be discerned in figure 15, which shows the central

xy-slice through the object, closer scrutiny reveals that the
contour corresponding to the flask boundary is not well

formed, showing elongation near the sides of the flask. The

xz-plane, shown in figure 16, is considerably more artifacted

than figure 13, which shows the corresponding view for the

properly registered data. This is especially true in the central
region. The degradation is severe enough to mandate that

serious attention be paid to the proper alignment of the views.

Figure 17, the xz-central slice through the reconstruction

from misregistered data, provides another illustration of the

artifacting.
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Figure 16.--This yz-slice is the same as in figure

i i -i Z

13 except that the

misregistered data set was used as input to the reconstruction algorithm.
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Figure 17.--This xz-slice is the same as in figure 14 except that the

misregistered data set was used as input to the reconstruction algorithm.

Conclusions

Numerical and laboratory experiments were performed to

test whether optical experimental techniques supplemented by

three-dimensional tomographic data analysis could be used to

measure scalar three-dimensional distributions. The numerical

experiments predict, and the laboratory experiments confirm,

that such reconstructions are extremely ill-posed. One 10 °

viewing cone is clearly insufficient to accurately recover the

object function. Additional data, such as from another cone

of views, alternate laboratory techniques, or the application

of constraints will be necessary before these methods can be

used practically in a three-dimensional setting.
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